Necessary optimality conditions for geodesics in weighted Wasserstein spaces
نویسندگان
چکیده
Abstract: The geodesic problem in Wasserstein spaces with a metric perturbed by a conformal factor is considered, and necessary optimality conditions are estabilished in a case where this conformal factor favours the spreading of the probability measure along the curve. These conditions have the form of a system of PDEs of the kind of the compressible Euler equations. Moreover, self-similar solutions to this system are discussed.
منابع مشابه
Weighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces
In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملAbsolute Continuity of Wasserstein Geodesics in the Heisenberg Group
In this paper we answer to a question raised by Ambrosio and Rigot [2] proving that any interior point of a Wasserstein geodesic in the Heisenberg group is absolutely continuous if one of the end-points is. Since our proof relies on the validity of the so-called Measure Contraction Property and on the fact that the optimal transport map exists and the Wasserstein geodesic is unique, the absolut...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کامل